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SECTION I

INTRODUCTION

1.1 SCOPE

This document presents a consolidation and analysis of nondestructive testing
(NDT) data taken on spray on foam insulation (SOFI) test panels utilizing laser
shearography. The purpose of this investigation is to define test criteria for inspec-
tion of SOFI on the external tank (ET) using laser shearography, establish test
parameters and begin the process of determining the probability of detection (POD)
of flaws present in the inspected regions. Included in this report are:

• Detailed descriptions of the manufacture of the test panels and pro-
grammed debonds

• Test methods, procedures and parameters
• Test results
• Analytical description of probability of detection (POD) analysis
• POD curves based on test results
• Conclusions and recommendations for implementation of laser

shearography on the Orbiter external tank

1.2 OPTICAL NONDESTRUCTIVE TESTING TECHNIQUES AND LIMITATION

The underlying principal of most optical NDT targeting subsurface defects is the
comparison of optical information characterizing the surface of an object before and
after the object is subjected to some form of stress. Localized deformations on the
surface are typically indications of stress field disturbances within the object, and
provide information that can be used to locate and possibly characterize the flaw.

Optical nondestructive testing generally falls into two categories: coherent and non-
coherent techniques. Coherent NDT systems use laser light because of the ability of
laser radiation to interfere with itself at a boundary. Noncoherent NDT systems
may also utilize a laser; however, the laser is only a source of illumination and the
spatial and temporal coherence of the radiation are not exploited. The choice of
technique depends on the environment, surface characteristics and required resolu-
tion. Noncoherent techniques may yield submillimeter resolution with submicron
resolutions possible with coherent NDT.

1.2.1 NONCOHERENT NONDESTRUCTIVE TESTING. Examples of noncoherent
nondestructive testing are structured light and moir6 interferometry. In a struc-
tured light system a known geometric pattern of illumination is projected onto a
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surface to be inspected. Typical projection patterns are, but not limited to a line, a
series of lines, or a square grid. Surface deformations and surface profile can be
uniquely determined by analyzing the geometric distortion of the projected pattern
caused by its intersection with the test object. Deviations of the deflection of the
stressed surface from the expected natural response of the surface to the stress are
indications of a flaw.

Moir_ interferometry produces a fringe map characteristic of the surface being
inspected and is referred to as a moir_ interferogram. A moir_ interferogram is
produced when a grating (i.e., a series of light and dark bars with periodic spacing)
is projected onto, and distorted by a surface as in the caseof structured light. This
distorted grating is then superimposed on to a reference grating identical to the one
projected onto the object. The distorted grating and the reference grating interfere
to produce the interferogram.

A moir6 system can be configured such that the interferogram consists of a series of
fringes which represent equal depth contour lines on the surface. However, as with
all interferometric methods, nonuniqueness of the fringe order precludes the direct
determination of the surface profile from a single interferogram. Where it is neces-
sary to determine the unique surface profile, phase shifting methods are usually
implemented to establish unique fringe order.

A moir_ system doesnot require coherent light and thus the term moir6 "interfer-
ometry" can be somewhat misleading. With respect to a moir_ system, the word
interferometry describes the interactions of the spatial phases of the distorted and
reference gratings and not the interactions of the phases of the light waves them-
selves, as is the case in the coherent NDT techniques.

To analyze a surface, moir_ interferograms are obtained in the stressed and un-
stressed conditions and compared. Deviations in the interferograms other than
those expected by the natural response of the surface to the stress are indications of
a flaw.

1.2.2 COHERENT NONDESTRUCTIVE TESTING. The ability of coherent light to
interact with itself at a boundary is the basis of coherent NDT and the reason for its
high, submicron resolution. Coherent NDT is accomplished by two techniques:
holography and shearography.

1.2.2.1 Holography. Holography uses the phase relationship between a reference

beam and a target beam (light scattered off of a test surface) to record surface

deflections. When an object under inspection is subjected to some stressing mode,

the surface deforms and causes the light scattered from that surface to change
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phase relative to the reference beam. When the reference beam and target beam
are recombined and the phase interactions are recorded via some medium (e.g., film
plates or CCD's), the result is a fringe pattern or hologram.

The fringe pattern consists of a series of light and dark bands. The dark bands
correspond to phase changes between the target and reference beams that are a half
integer number of wavelengths while the light bands correspond to phase changes
of integer numbers of wavelengths. Therefore, it is possible with holographic sys-
tems to measure surface displacements on the order of half a wavelength of the
light being used. Holographically generated fringes represent true surface displace-
ments as in the caseof the moir6 interferogram mentioned above. However, holog-
raphy is typically many orders of magnitude more sensitive than moir6 techniques.

Typical holographic methods include double exposure holography in which a holo-
graph of a test object is exposedon a photographic medium before and after loading
and electronic speckle interferometry (ESPI) which utilizes a phenomenon known as
speckle. BecauseESPI has made it out of the laboratory and in to field application
a brief discussion of it follows beginning with the speckle pattern.

1.2.2.2 Speckle Patterns. Whenever an object is illuminated with a diverging laser

beam, an observer viewing the object will notice the light to have a granular appear-

ance. This granularity is referred to as speckle. The perceived speckle pattern,

however, is not created at the surface, which is uniformly illuminated, but rather on

the observer's optical detector, the retina. The optical receptor cells that make up

the retina have a finite extent (i.e., they are not infinitely small) and, therefore,

each cell receives light from more than a single geometric point on the surface being

illuminated. Because laser radiation is coherent, the phase differences of the light

form adjacent points on the surface reaching a single receptor cell causes construc-

tive or destructive interference. The variation in this interference from one cell on

the retina to the next is what is visualized as the seemingly random speckle pat-

tern. The speckle pattern, however, is not random and actually represents a phase

map of the surface being illuminated. If the retina is replaced with another detector

constructed of small resolution elements, such as a CCD, the phase information

constituting the speckle pattern may be exploited to render a set of very powerful
NDT instruments 1.

1.2.2.3 Electronic Speckle Pattern Interferometry (ESPI). A typical layout for a

ESPI system is shown in figure 1-1. Being atrue holographic technique, the coher-

ent radiation from the laser is separated into a reference and a target beam. The

light scattered from the target is recombined with the reference beam via a beam

splitter prior to illuminating the detector. The interaction between the target and

reference beam at the detector causes interference which represents the speckle
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Figure 1-1. A Typical Configuration for ESPI

pattern at the surface. Out-of-plane surface deformations are detected by compar-

ing the speckle patterns of the surface before and after applying some form and

level of stress to the object. The initial image, against which all subsequent images

will be compared, is refereed to as the reference image. The reference image is

obtained by digitizing the output of the camera and storing the result in video or

computer memory. The object is then subjected to various levels of stress, and

subsequent speckle images are digitized and compared to the reference image by

point-by-point image subtraction. This image subtraction can be done at video rates

yielding a real-time display on a monitor of the out-of-plane surface deflections.

The output on the monitor is a fringe pattern consisting of a series of bright and

dark bands representing equal depth contours of the surface. The bright bands

correspond to surface deflections which are integer multiples of the wavelength in

magnitude while the dark bands correspond to surface deflections which are half

integer multiples of the wavelength in magnitude.

ESPI is a very powerful and sensitive NDT technique and has had some success in

the field. However, ESPI does suffer from some serious limitations, most of which
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are intrinsic to holographic systems--specifically, the use of separate reference and
target beams.

First, ESPI requires a relatively complicated Optical system consisting of many
components which must be rigidly fixed and maintain precise alignment while
operating in field environments. As is the casewith all dual path interferometric
systems, strict requirements are also placed on the coherence length of the laser
being used. In order to achieve fringe patterns with high fringe visibility, the coher-
ence length of the laser light must be longer than the entire optical path length of
the system. This includes the length the beam must travel in the reference path of
the system as well as the distance to and from the target surface. This coherence
length restriction usually requires the laser being used to run in single mode.
Fringe interpretation of holographically generated interferograms can also be diffi-
cult becauseof fringe patterns introduced by rigid-body motions as well as those
created by localized surface deflections caused by defects.

The most limiting aspect of ESPI, however, is its sensitivity to vibrations. If the
object under inspection, as well as any of the components of the instrument itself,
move a distance which is on the order of the sensitivity of the instrument (i.e., half a
wavelength), spurious fringe patterns will be formed. Therefore, vibration isolation
equipment is usually required. This makes implementation of ESPI in typical field
environments extremely difficult and limits the range of applications of this tech-
nique.

1.2.2.4 Shearing Interferometry. Many of the restrictions limiting the use of ESPI

in the field can be relaxed to a great degree while still maintaining a high degree of

out-of-plane resolution by implementing shearing interferometry 2. A typical layout

for a laser shearograph is shown in figure 1-2.

In shearography, the test object is illuminated with coherent laser radiation and the

light scattered from the surface is collected and passed through some kind of shear-

ing optic before the image is focused on the detector. The shearing optic splits the

scene into two identical images and displaces the images in space relative to each

other before they are focused on the detector. The result is that each resolution

element of the detector receives energy form two distinctly different locations

on the surface being imaged. Because this image shear has a magnitude and a

direction it is often referred to a the shearing vector. There are many implementa-

tions of image shear such as linear/lateral shear, rotational shear, radial shear,

inversion and folding. The most commonly used is lateral shear. Lateral shearing

of an image may be realized in several ways, the most common of which are shown

in figure 1-3.
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Figure 1-2. A Typical Configuration for Laser Shearography

The wedge prism method is not used to a great extent because proper placement of

the prism within the optical system is critical to maintain good optical resolution

characteristics and this may be difficult. The birefringent shearing optic is very

convenient as it contains no moving parts, is very robust and compact for field use,

and it is easily rotated to change the direction of the shear vector. However, the

magnitude of the spatial separation between the two superimposed images cannot

be dynamically changed because that is a function of the crystal dimensionality.

Although not as robust or compact as the birefringent shearing optic the Michelson

type optic is well suited for the field environment and adds the ability to dynami-

cally change the magnitude as well as the direction of the shear vector. Magnitude

changes are accomplished by tilting on of the mirrors in the system to shift one

image relative to the other. Directional changes to the shear vector are made by

rotating the entire Michelson system.

The laser shearograph used in this report utilized a birefringement shearing optic

with a fixed shearing magnitude of 0.5 degrees; however, a camera with a 1-degree

shearing optic was obtained for a short time and the results from each were com-

pared 3,4. This will be discussed in more detail later in this report.

When looking at the two figures representing a ESPI system and a shearographic,

system several major differences are observed. First, the shearographic system has

greatly simplified optical system. Second, the shearographic system does not utilize
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Figure 1-3. Common Methods of Creating Image Shear in a Shearography System

a reference beam. Because of this, a shearographic system may be referred to as a

common path interferometric technique.

Common path interferometric systems have two distinct advantages over other

systems utilizing phase interference as the detection mode. The light traveling to

and from the surface encounters essentially the same environmental conditions (i.e.,
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temperature, air movement, etc.). Therefore, thermal loading of a test object may
be exploited because the effect of air currents between the test object and the detec-
tor, to some degree, tend to cancel out. Air motion may still be seen, but the effect is
greatly reduced when compared to dual path interferometric techniques. Also, as
with all common path interferometers, the demands of coherence length of the laser
source are greatly mitigated, and there are no restrictions on the optical path length
to the object to ensure coherence between the wavefronts forming the interfero-
grams.

The final obvious difference is the presence of the shearing optic mentioned above.
In shearography the light forming the image is split by the shearing optic and the
two images are recombined on the detector laterally shifted by some distance. In
this way the laser radiation illuminating the surface acts as its own reference.
Each resolution element on the detector (from here on assumed to be a charged
coupled device (CCD) camera) receives its speckle phase information from two
distinct points on the surface whose separation is a function of the magnitude of the
image shear. •

When the object under inspection of a shearographic system vibrates or undergoes
bulk motion the pair of points contributing to the speckle at a single resolution
element on the CCD tend to move together. In this way the phase relationship at
that element remains relatively constant and the shearographic system becomes
largely insensitive to environmental vibrations and rigid-body motions.

When an object is being inspected with a shearographic system and a subsurface
defect is present, stressing of the object will cause a localized surface deflection in
the vicinity of the flaw. This local surface deflection will cause the two points that
contribute to the speckle phase information at a resolution element on the detector
to undergo an out-of-plane motion relative to each other. The relative motion
between the paired points alters the phase relationship of the light reaching the
element on the CCD and causes a change in the intensity response of that element.
Because the difference in relative motion between the paired points is referenced to
the magnitude of the image shear, the information contained in a shearogram is a
scaled modular measure of the slope of the localized surface deflection along the
direction of the image shear. Therefore, with shearography the fringe patterns
represent regions of deformation gradient and not deformation amplitude as in the
case of ESPI.

It should be noted here that the sensitivity of a shearographic system can be ad-
justed by changing the magnitude of the shear vector. However, while a larger
image shear will increase the sensitivity of the system, it also causes the fringe
patterns present in the shearogram to be less representative of the true first deriva-
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tive of the out-of-plane surface deflections. True deformation gradient fringes are
only realized at small shear vectors, and small shear vectors tend to produce very
few resolvable fringes. This trade-off must be handled on a need-to-know basis. If
the simple detection of flaws is the driving interest of an investigation, a relatively
large shear vector would be appropriate. If the actual geometry of the surface de-
flection is to be inferred by the fringe pattern, say by phase-shifting techniques, as
small a shear vector as possible which still yields a usable number of fringes should
be used.

In practice a shearographic system operates similar to an ESPI system. A sheared
reference image of the surface containing speckle information is acquired, digitized
and stored in computer memory prior to applying stress. Subsequent sheared im-
agesof the object under varying degrees of stress are subtracted point-by-point from
the reference image at video rates, and the results are displayed on a monitor. The
output on the monitor presents a fringe pattern in the area of localized surface
deflections and black where there is no local out-of-plane motion or uniform bulk
motion. A typical shearogram is shown in figure 1-4. A special shearogram of a
debond in the shape of the word "NASA" is shown in figure 1-5.

With the availability and reliability of small, high-power diode lasers which operate
in a range of wavelengths suitable for use with silicon-based CCD cameras (visible
to near infrared), laser sheargraphy heads can be made small and compact. For
example, a diode laser, shearing optic and CCD camera can all be integrated within
a self-contained vacuum hood small enough to reach areas of difficult access. The
ability to reach and inspect areas of awkward or difficult accessis essential for any
NDT tool to be considered useful.

1.2.2.5 Summary. In brief summary, a comparison of holography and

shearography will show that holography is inherently more sensitive and can detect

smaller deformations; however, it is extremely sensitive to ambient vibrations and

• rigid-body motions and, therefore, must typical be carried out on a vibration isola-

tion platform. Shearography is theoretically less sensitive because it measures

displacement gradients instead of true surface deflections, but it is significantly

more immune to vibrations and bulk motions. As a result, holography is usually the

method of choice for small objects which are easily isolated from vibration.

Shearography is the method of choice for larger object such as aerospace structures

and where these inspections must take place in the field and often in difficult access

ares. For this reason laser shearography appears to be the most appropriate

method to inspect the orbiter ET SOFI for debonds and voids.
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Figure 1-4. An Example of a Shearogram.
(This data was taken from a test panel constructed of K5NA

ablative material used on the solid rocket motors.)

Figure 1-5. Deliberate Shearogram of a Debond in SOFI in the Shape of
the Word "NASA" for Illustration Purposes Only
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SECTION II

TEST METHODS, PROCEDURES, AND PARAMETERS

2.1 SOFI TEST PANELS

Three test panels were fabricated for this investigation. It was desirable to have a
larger set of panels to increase the data set; however, due to time and availability
constraints, the test specimens were limited to three. Every effort was made to
maximize the information content of each panel.

2.2 SOFI TEST PANEL CONSTRUCTION

Each test panel was constructed from a 24-inch square aluminum substrate with a
nominal thickness of 0.125 inch. The substrate was prepared with a two-part epoxy
primer by Martin Marietta Corporation _. Prior to applying the programmed
debonds, the primer was prepared to a "water-break-free" surface by cleaning with
distilled water and a freon wash.

The programmed debonds were prepared by the Teflon sandwich method in which
two thin sheets of Teflon are cut to the desired shape, placed face-to-face and cov-
ered with a thin layer of tape to maintain debond integrity. The debonds were
placed close enough to each other on the test panels to maximize the number of
debonds per panel, but not so close as to interfere with each other during testing.

Programmed debonds consisted of symmetric and asymmetric geometries. Circular
and square debonds were created ranging from 0.5 inch to 2 inches in 0.25-inch
increments. There are also seam/strip debonds and "L" shaped debonds to deter-
mine the dependency of detectability on shear vector orientation. Also incorporated
in the test panels are annular debonds and groups of debonds placed in close prox-
imity to determine the ability of the system to spatially discriminate flaws which
may be separate but closely spaced. A resolution debond was constructed from a
triangle approximately 12 inches in height with a 4-inch base. This debond was
used to help determine the detectability threshold for SOFI depth verses lateral
flaw extent.

The test panels were sprayed with standard SOFI equipment used at KSC to a
nominal thickness of 3 inches. Subsequently, the panels were planed off to a thick-
ness of 1.5 inches.

2-1



2.3 SOFI TEST PANEL INSPECTION

Each panel was inspected with two fields of view with four orientations of the shear
vector in each view. The first view consisted of the entire 24-inch square panel.
Using this field of view the entire panel was inspected using a vertical shear vector,
a shear vector 45 degreesoff of vertical, a horizontal shear vector and a shear vector
135 degrees off of vertical. The field of view was then reduced to an area which sub-
divided the test panel in to nine subareas with some overlap between adjacent sub-
areas. Each of the nine subareas were then inspected, again, with the four shear
vector orientations. This process was carried out for each of the three test panels at
a fixed SOFI thickness.

Because of the material properties of SOFI, vacuum stressing was considered to be
the optimum stressing mode and was used to inspect all of the SOFI test panels. To
facilitate this, a vacuum chamber was manufactured from Plexiglas. The vacuum
chamber measured 25x26 inches. The side walls were made from l/2-inch thick
Plexiglas and the top and bottom of the chamber were made from 3/4-inch Plexiglas
to minimize deflection during the vacuum drop. Vacuum was applied to the cham-
ber from the vacuum device provided by Laser Technology, Inc. with the laser
shearography system. The chamber was also connected to a vacuum gauge so pres-
sure drops could be monitored.

Two to three inspectors were present during all testing and the panels were tested
in random order. In order to impose a quantitative value on visual data, a scale was
developed for use in grading the detection of the flaws. The grades were assigned
with a value of 1 to 10 and the following criteria were used:

1. A perceived nonuniform disturbance in the image when observed under
dynamic stress (Metaphysical Detection).

2. A nonuniform disturbance in the image observed under static stress.
3. An apparent separation of two areas (derivative) under dynamic stress

warrant future investigation (possible detection).
4. A surface deflection sufficient to cause single phase step resulting in uni-

formly bright doublet with no secondary fringes. Considered to be a detec-
tion of a flaw.

5. A surface deflection sufficient to cause the formation of a double bullseye;
i.e., one complete set of fringes. (light/dark pair)

6. A surface deflection sufficient to cause the formation of two sets of fringes.
7. A surface deflection sufficient to cause the formation of three sets of

fringes.
8. A surface deflection sufficient to cause the formation of four sets of fringes.
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9. A surface deflection sufficient to cause the formation of five sets of fringes.
10. A surface deflection sufficient to cause the formation of six or more sets of

fringes.

For the purposes of flaw identification, a grade of 4 or higher is considered to be a
detection. A grade of 3 would be cause for additional testing; e.g., by zooming in on
an area of grade 3 the image is enhanced and the area may then be upgraded to 4 if
it meets the criteria.

When the inspection of all panels at a fixed foam thickness was completed, the
SOFI was then reduced by 0.25 inch and the entire test procedure was repeated.
This process continued until the SOFI was reduced to a thickness of 0.5 inch. The
nominal thickness of the SOFI on the external tank is 1 inch and as such extra data
was taken at that thickness. This is discussed in more detail below.

2.4 ADDITIONAL TESTING

Data at all thicknesses and views were typically taken at I inch of water vacuum.
Full panel views were performed at a nominal laser power of 500 mW and subarea
testing was performed at 100 mW. Additional testing at the nominal foam thick-
ness of 1 inch included vacuums of 1, 5, 10, and 15 inches of water in the full panel
views and 1 and 10 inches of water in the small area testing. No detectability en-
hancement was observed for the higher vacuum levels in the SOFI. A possible
reason for this phenomenon will be discussed further in section III. For field inspec-
tions on SOFI, a vacuum hood containing a shearography camera and laser source
would typically be used. The vacuum hood is attached to the inspection surface by
pulling just enough vacuum to hold it in place. At that point the reference image is
obtained and the vacuum is increased slightly to cause a surface deformation in the
area of a debond. Therefore, additional testing at the nominal foam thickness of 1
inch included vacuum offsets of 1, 5, 10, and 15 inches of water in the full panel
views and 1 and 10 inches of water in the small area testing. Also, at the 1-inch
SOFI, thickness tests were performed using a shearography camera with a 1-degree
shear vector instead of the 0.5-degree shear vector which was supplied with KSC's
laser shearograph. These results will be discussed later. Figure 2-1 shows a typical
shearogram showing debonded areas in 1 inch of SOFI at a vacuum of 1 inch of
water. The debond in the upper left corner is a 1-inch square, the debond in the
upper right corner is a 1.5-inch circle, and the debond in the lower right corner is a
2-inch circle. There is a 0.5-inch debond present in the lower left corner but it is not
quite visible in this image.

2-3



Figure 2-1. A Typical Shearogram of Debonds in SOFI
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SECTION III

TEST RESULTS

3.1 CIRCULAR DEBONDS

Because of their symmetry, the circular debonds provide the easiest shearograms to

interpret. They also provide the largest and most consistent data set due to their

invariance under shear vector rotation (i.e., except for the elongation of the

shearographic indication along the direction of the shear vector, the shearograms

look very similar).

As mentioned earlier each test panel was inspected with two fields of view: a view

which looked at the entire 24-inch square panel and a view which subdivided the

panel into 9 subareas with some overlap. Shown in figure 3-1 are the average detec-

tion values of circular debonds plotted as a function of SOFI thickness and defect

diameter for the field of view consisting of the entire test panel. (Note: see appen-

dix A for plots of the unaveraged values.) This data consists of measurements made

at all shear vector orientations, SOFI thicknesses, and vacuum drops of 1 inch of

water. Because the defect grading system used integer values for rating detection,

with 3 being a possible detection and 4 being considered a true detection, when the

data is averaged the values between 3 and 4 must be accounted for. Therefore, in

presenting the data in averaged form a detection value greater than 3 is considered

a detection. Also, a conservative estimate of error of _+ 1 detection value is imposed

based on the standard deviation of the data and the discrepancies between inspec-

tors grading of defects.

From figure 3-1 it is seen that the 0.5 inch diameter defect was not detected at any

SOFI thickness in the full panel view and 1 inch of water vacuum drop. As would

be expected, however, the larger the defect the thicker the SOFI in which it was

detected. Every defect larger than 0.5 inches met the detection criteria at all SOFI

thicknesses. Figure 3-2 shows the same defects, SOFI thicknesses and vacuum drop

but with the smaller field of view. By zooming in to reduce the field of view, the

effective resolution of the shearographic system is increased. This effect is clearly

seen in this figure by the detection of the 0.5- and 0.75-inch defects not present in

figure 3-1, as well as the greater detection values for all the other defects. There

are also two other important aspects of detecting debonds in SOFI by shearography

that are apparent in this figure.
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First, by moving from left to right along a line of equal SOFI thickness in figure 3-2,

it is clear that the growth in detection value as a function of defect size is not con-

stant. Because of the material properties of SOFI (and all materials where surface

deflections are being measured) such as elasticity and Poisson ratio, smaller defects

require more force to achieve the same surface deflection as that of a larger defect.

Because it is surface deflection that is detected by shearography, this limits the

detectability of small defects with small vacuums. This now begs the question: why

not just increase the vacuum until the smaller defects are detected? There are two

reasons. First, field inspections of the ET SOFI will likely be conducted by use of a

vacuum hood which will be placed on the surface of the SOFI. Pulling too large a

vacuum could result in damage to the SOFI. Second, there is a physical limitation

imposed by material characteristics of SOFI which establishes a threshold of a

vacuum.

SOFI is a relatively soft closed-cell material and each cell contains a small volume

of air. When vacuum stressing is applied to SOFI, the entire surface under inspec-

tion expands. Therefore, there is a race between the deformation of the surface due

to a debond and that due to the individual expansions of the cells. At low pressure

drops the surface deflection caused by the expansion of the larger volume of air

present at a debond wins out. However, as the vacuum increases, the deformations

caused by the closed cells grow to a point where the image decorrelates and the

defect can no longer be distinguished. Throughout the testing of the panels it be-

came clear that, in SOFI, if a defect was not detected with a pressure differential of

1 inch of water, it was not likely to be detected at all.

Another important factor can be seen from figure 3-2 by looking at the detection

values along a line of constant defect diameter. For a fixed pressure differential, in

this case 1 inch of water, larger defects grow more quickly to a maximum detection

value as a function of SOFI thickness than do smaller defects. Further, increasing

the vacuum level after these maximums have been reached does not usually in-

crease the detection value but, instead, causes decorrelation of the image and the

defect can no longer be seen.

3.2 SQUARE DEBONDS

Square debonds obviously do not possess the same degree of symmetry as do circu-

lar debonds. Therefore, when investigating the ability of a shearographic system to

detect debonds having a square, or approximately square geometry, the dependence

of detection as a function of shear vector must be considered. This is true for all

defects which do not possess complete symmetry about the viewing axis of the

shearographic system. This statement implies that in field inspections on flight
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hardware, every area tested must be inspected with multiple shear vector orienta-
tions. The extreme importance of inspecting with multiple shear vector orientations
will be clearly seen when the data on seam debonds is presented below. (Note:
seam debonds are one of the most common debonds found on the ET.)

Figures 3-3 through 3-6 show the results for the square programmed debonds. Each
figure represents a single square debond and plots detection value as a function of
SOFI thickness and shear vector orientation. This data is not averaged because the
possible functional dependency of detection value on shear vector is shown and
therefore, the detection threshold is taken to be 4. As seenbefore in the circular
defect data, a conservative estimate of error in the detection value is + 1.

By going to any of the figures 3-3 through 3-6 and moving along a line of constant

foam thickness, it is seen that for the square debonds there is no significant amount

of change in the detection value as a function of shear vector orientation. The over-

all detection values for the square debonds are, however, higher than those of the

corresponding circular debonds. This is not surprising because a square debond 1

inch on a side has a larger surface area than a circular debond 1 inch in diameter.

Also, the higher stresses associated with the coroners of a square debond may

propagate to the surface and enhance surface deflections.

Since there is no strong dependency of detection values as a function of shear vector

orientation for the square debonds figures 3-7 and 3-8 are provided for consistency.

Figures 3-7 and 3-8 represent the average of all the data for the square debonds in

the full panel and subarea views respectively. As with figures 3-1 and 3-2, the

detection threshold is 3 and the estimated error in detection value is _+ 1.

By comparing figures 3-1 and 3-2 with figures 3-7 and 3-8, it is seen that circular

and square debonds exhibit many of the same characteristics. Both exhibit a non-

linear growth in detection value as a function of defect size as well as the leveling

off of detection values as SOFI thickness decreases.

3.3 SEAM DEBONDS

As discussed earlier, laser shearography detects the gradient of the out-of-plane

displacement of a surface along the direction of the shear vector. This can pose a

problem in the case of defects which possesses a high degree of asymmetry as in the
case of a seam debond.

Consider a long and narrow, substrate level, horizontal seam debond under some

thickness of SOFI (or any other material). When some stressing mechanism is
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applied, in this case vacuum stressing, the debond manifests itself as a surface

deformation the outline of which will approximate the shape of the debond to a

degree depending on the thickness and characteristics of the material. When this

surface deformation is viewed with the shear vector in the vertical position (perpen-

dicular to the long dimension of the seam debond) the gradient is imaged for every

point along the length of the deformation. The result is a shearogram consisting of

a classic shearographic double bullseye extending the length of the surface deforma-

tion. (This is illustrated in figure 3-9).

When the surface deformation is viewed with the shear vector parallel to the

debond the result is much different. Surface gradients are localized at the end

points of the seam debond. Therefore, two shearographic indications are created at

the end points, but in the middle area of the surface deformation Where the gradient

is nearly zero, no indication is formed. This situation is shown in figure 3-9. This

phenomenon results in a greatly reduced visual indication of the debond, and if the

seam is long enough, can result in misinterpreting the indication as two separate

debonds or not identifying the seam debond at all.

SHEAROGRAM

t f O  O.MAT,O.
a)

SHEAROGRAM O O

SH EAR
VECTOR

S SURFACE DEFORMATION "_

b)

Figure 3-9. Shearograms for a Seam Debond. a) shear vector perpendicular to

debond, b) shear vector parallel to debond.
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Figures 3-10 and 3-11 show the results of data taken on two seam debonds, 3/4-x-3
inches and 3/4-x-10 inches respectively. The figures show detection values as a
function of foam thickness and shear vector orientation. In figure 3-10 it is clearly
seen that the detection value is strongly reduced when the shear vector is at 90
degrees, or parallel to the debond for all SOFI thicknesses. However, because this
debond is relatively short in length, the shearographic indications remain close
enough to provide somevisual information that a debond is present. Figure 3-11
shows the results for the 10 inch long seam debond. In this casenot only are the
detection values greatly reduced when the shear vector is parallel to the debond,
but in somecasesthe debond was not detected at all. This again implies that when
doing field inspections on flight hardware where debonds are not likely to always be
symmetric, several orientations of shear vector must be used.

It must also be noted that even when the shear vector is rotated to 45 or 135 de-
grees, the visual indication of a seam debond is not as clear as that when the shear
vector is at 0 or 180 degrees. This is not always reflected in the data becauseeven
though the visual indication may be reduced, it may not change in detection value
based on the grading system established. For example, at a shear vector orientation
of 0 degrees, the shearogram of a seam debond may contain a double bullseye with
two secondary fringes in each side. This may still be the casewhen the shear vector
is rotated to 45 degreesbut the shearographic indication may be compressed or
have lower contrast and not be as visually clear as that at 0 degree shear vector.

Figure 3-12 shows the shearograms of the 3/4-x-10-inch debond in 1 inch of SOFI at
three shear vector orientations: 0, 45 and 90 degrees. At 0 and 45 degrees the
shearographic indications receive the same detection value; however, the
shearogram at 0 degree shear vector is visually clearer. At the 90 degree shear
vector orientation, the indication all but disappears.

3.4 TESTING WITH VACUUM OFFSET

To simulate shearographic testing of SOFI using a vacuum hood, inspections were
made on the test panels using a vacuum offset. An offset simulates the vacuum
required to seal the hood against the test object. In these inspections the vacuum
level was raised to 5, 10 and 15 inches of water before the reference image was
obtained. After the reference image was acquired, the vacuum level was increased
to generate a relative surface deformation in the presence of a debond. This proce-
dure neither enhanced nor degraded the detection of the programmed debonds. In
fact, the detection values for all the values of vacuum offset were essentially identi-
cal to those where no offset was used. Also, the same dependency on detection as a
function of pressure differential was observed. There was no increase in debonds
detected when the pressure differential between the offset vacuum and the test
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vacuum exceeded 1 inch of water, and at a pressure differential of 3 inches of water
decorrelation effects begin resulting in image degradation. While this may seem to
contradict the discussion on page 3-4 regarding increasing vacuum and detectabil-
ity, it does not. It is the differential between the pressure at which the reference
image is stored (offset vacuum) and the test vacuum that is important. Therefore, if
the reference image is obtained at a pressure drop of 10 inches of water, the test
vacuum could range from 7 to 13 inches of water before decorrelation set in.

3.5 TESTING WITH 1 DEGREE SHEAR VECTOR CAMERA

By increasing the magnitude of the shear vector, the sensitivity of a shearographic
system to out-of-plane surface deformations is increased. In order to determine if a
larger magnitude shear vector would increase the detection of debonds in SOFI, a
shearographic camera with a 1-degree shear vector was obtained on loan for a short
period of time from Laser Technology Inc. Inspections were made on the test panels
at the 1-inch nominal SOFI thickness. The increase in shear vector magnitude
seamed to increase the fringe visibility in the shearograms. However, the number
of fringes present in a shearogram for a specific debond did not increase. The detec-
tion values for all defects tested with the 0.5- and 1-degree shear vectors were iden-
tical and no defects were detected by the 1-degree camera that were not detected by
the 0.5-degree camera. Although the 1-degree camera is more sensitive, it is be-
lieved that the detection of defects in SOFI is still limited by the race between the
deformation of the surface due to a debond and that of the closed cell structure of
SOFI. The increase in sensitivity allows the surface deformation from a debond to
be detected earlier in the vacuum pull before the closed cell structure of the SOFI
has much chance to react. This results in the increase in fringe visibility (signal-to-
noise) in the shearogram. However, by the time the vacuum increases to the point
where small debonds may be affected, the SOFI has reacted to a level where
decorrelation of the image sets in. The 1-degree shear vector enhanced the visual
quality of the shearograms but not the ability of the system to detect debonds in
SOFI.

3.6 DATA NOT DISCUSSED

The above discussion is limited to the more common types of debonds likely to be
found in the field. As mentioned earlier, the programmed debond set also includes
annular debonds, groups of debonds placed in close proximity to determine the
ability of the system to spatially discriminate flaws which may be separate but
closely spaced,triangles, a long triangular resolution debond, and "L" shaped
debonds. Appendix B contains a legend of all the programmed debonds that were
created, with their identification number, panel number, geometry and dimensions.
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Following the legend is the complete data set containing all the measurements
taken on all the programmed debonds, on all the test panels at all SOFI thick-
nesses. The reader is invited to use the data contained in appendix B to satisfy any
curiosity on data not discussed, to add on their own to this report or to verify any of
the results presented herein.
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SECTION IV

PROBABILITY OF DETECTION ANALYSIS

4.1 PROBABILITY OF DETECTION (POD) ANALYSIS

The probability of detection analysis performed in this report utilized software writ-
ten by A.P. Berens and P.W. Hovey from the University of Dayton Research Insti-
tute under a contract with the U.S. Air Force. The software is called "PODSS" and
has the U.S. military identifier UDR-TR-88-12. A brief analytical discussion of the
al-gorithms it uses is presented below6.

4.2 PROBABILITY OF DETECTION FROM SIGNAL RESPONSE DATA

Any measurement instrument generates a response which is somehow dependent
on what the device is measuring. Let _ represent the response of the laser shearo-
graph (the presence, lack of presence or the density of fringes present in the
shearographic indication) to a debond of size a. The probability of detection (POD)

can be obtained from the relation between _ and a. Let ga (_) represent the prob-

ability density of the _ values for a defect of size a. The POD can then be written

as:

POD( ) f;d g (^)d'_a : a ,
ec a

where _tdec is the decision threshold, below which the response of the instrument is

not sufficient to identify a defect. The correlating function between _ and a defines

the mean Ofga(_ ) and is written as:

= _t(a) + _i,

where _t(a) is the mean of ga (a) and 8 is a random error term accounting for the dif-

ferences between fi and _t(a). The distributional properties of determine the prob-

ability density ga (a) about _t(a).

Berens and Hovey have had satisfactory results in POD analysis utilizing a linear

relation between ln(fi) and ln(a) with normally distributed deviations. The model
has the form:

ln(a) _-_ 130 "_- _1 In(a) + 5,
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where _5is normally distributed with zero mean and constant standard deviation,
($5.

With the above assumptions, the POD(a) function is calculated as follows:

POD(a) = Probability [_ > ade:]

POD(a) = Probability [ln(_) > ln(_de c )]

POD(a) = 1_ o[ln(aae: ) _a+fll ln(a)- (1)

where (P is the standard normal distribution function. Using the symmetry proper-

ties of the normal distribution function, equation (1) can be reduced to:

POD(a) = (i)_ln(a)-[ln(adec)-(ra/fll ,60]fill ) (2)

Equation (2) is a cumulative log normal distribution function with mean and stan-

dard deviation of log defect size given by:

ln( fide )--
p=

The terms _0, 13_and ($5 are estimated by the method of maximum likelihood estima-

tors.

As stated above it is assumed that the _ values for a defect of size a have a normal

distribution with mean and standard deviation given by:

where ($5 does not depend on the defect size. Berens and Hovey simplify the nota-

tion by letting Y/ = ln(_ i) and X i = ln(a/). The random variable:
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r-(/Bo +IBex)
Z=

has a standard normal distribution.

standard normal distribution:

G_

Let ¢(z) represent the density function of the

1 2

O(Z) = _xp[-(z2 )]

and O(z) represent the cumulative normal distribution:

¢(zi: L

The likelihood function is then partitioned into three regions:

Region R: the region in which _ values were recorded. (i.e., above the decision

threshold and below the saturation limit of the instrument)

Region T: _ values are below the decision threshold

Region S: _ values are the saturation limit of the instrument and cannot be
recorded

The likelihood function for the entire sample is the product of the likelihood func-

tions for the three regions and can be written as:

s Z,s.

Where

" 1
L R : fl---_(Zi )

/=1

t

LT = H Oi (ath)
/=-1

$

Ls= fl[1- O,(asat 11
i=l

because 1/G ¢#(Zi)dz is the probability of observing h i for the ith defect in R, CP_(ath )

is the probability of obtaining an h i value below the recording threshold for the ith
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defect is S, and 1-O/(asa,) is the probability of obtaining an _ value above the satu-
ration limit for the ith defect in T. The log of the likelihood function is:

ln[L(_0, _1' (_5)]

=-rln(G)-2-_[Yi- (_0 + B1Xi)] 2

+ _ lnO,(a_) + _ln[l' ¢,(asat) ]
T S

where r is the number of defects in R, or the number of defects that are above the

decision threshold and below the instrument saturation.

The maximum likelihood estimators are given by maximizing the likelihood func-

tion with respect to each term 60, _1 and G_. Therefore, the maximum likelihood es-

timators are the solutions to:

O-°_ln(L)- 1

_fll (7

0- aln(L)
ao-

S T

--GI[ -r+EZ2i +EZiV(Zi)-EZiw(Zi)Rs T

where"

v(zi)-  (zi)
1-¢(z,)

w(z,)_-
¢(z,)

These equations are solved iteratively by standard numerical methods. Excellent

choices for the initial estimates of the iterative process are the intercept, slope and

standard deviation of residuals obtained from a standard linear regression analysis

on the linear relation between _ and a on the values of _ for which a valid re-

sponse was obtained.
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SECTION V

POD CURVES BASED ON TEST RESULTS

5.1 DISCUSSION OF POD

The POD curves are shown in figures 5-1 through 5-23. These curves are consis-
tent with the data presented in section III of this report. As would be expected, at
the thinner SOFI thicknesses the POD curves begin to rise at very small defect
sizes and the curves transition to high POD's very quickly. This is due to the very
high detection rate of all defects in the thinner SOFI thicknesses. As the SOFI
thickness increases, however, the curves shift to the right and the transition to high
POD's occurs more strongly detected.

5.2 PODS FOR CIRCULAR DEBONDS

Figures 5-1 through 5-5 show the PODs plotted as a function of circular defect size

in all SOFI thicknesses when viewing the entire panel. As expected, the thinner the

SOFI the higher the POD. It is clear from these figures that in the full panel views,

the small debonds do not show up well even when the SOFI is thin. This phenom-

enon was discussed earlier; however, it is clearly illustrated in this set of figures.

For example, if one looks at the POD of a debond that is the same diameter as the

SOFI thickness, in general, the larger debonds are more easily detected indepen-

dent of SOFI thickness. Figure 5-1 gives a POD of approximately 0.75 for a 0.5-inch

diameter debond in 0.5 inch of SOFI, while figure 5-2 gives a 0.87 for a 0.75-inch

debond in 0.75 SOFI. Figure 5-3 gives a 0.99 for a 1-inch debond in 1 inch of SOFI;

figure 5-4 gives a 0.98 for a 1.25-inch debond in 1.25 inch of SOFI; figure 5-4 gives

a 0.98 for a 1.25-inch debond in 1.25 inch of SOFI; and figure 5-5 gives a 0.98 for a
1.5-inch of SOFI.

Figures 5-6 through 5-10 show the results from the circular debonds when inspected

in the subarea views. As stated earlier, the effective resolution of the shearograph

is increased as the surface to be inspected is zoomed in on, and in general, the de-

tectability of a debond was enhanced when a smaller area is viewed. Again, using

the criteria of debond diameter equal to the thickness of the SOFI, figure 5-6 shows

that the POD of a 0.5-inch debond is essentially 1. The 0.75-inch foam/defect com-

parison is 0.95 and subsequent figures show the POD to be 0.98 or greater. The

importance of this observation is that small debond detection is enhanced when the

field of view is smaller. Therefore, the trade-off in speed of large area inspections

with detection size criteria needs to be addressed.

5-1



|

O

I,_o

I._o
¢,-,p

O

,L-.,,P

¢,-i.-
i,_°
O

O

I...a °

(1:)

O

O

b-,

c_

I..,.do
c_
m-'

©

o
b

o
o

P

o

o

O
rrl o
•-n b_
rrl
(3
.-I

N
rrl

Z .-,.

o
(3
'l"
m
of)

o.1

o')

,.,a,

t..o

IN)
o

o

PROBABILITY OF DETECTION

o o p o .o o .o p
¼ 00 _ o

i

i

i

'1; - ii

ii

_r.,o "0
o

o
O
Z
"-n

rrl
Z
(3
rrl

w
O
C
Z
O



0

a
z

o

111
0

z
ILl
a

,7"
Z

0
o

O

f

d d d d o d d d o o

NOIlO313a _-I0 1.1.1718V80_cI

O_

'r--

'r--

CO

"r-

'r'-

e_

W
I

•- 0

z
Ill

"- N

I--

O i.l.I
LI_
Ul

a
c0

O

Z
d

d

d

d

O

O

O

O

Z

©

0PM

2_

u4

O

O

._-.i

C..)

o

O

O

O

N?

15-8



_,-g

_o

(:rq

cD

i

C...Q

O

I-J°

_°
C'P

O

c'P

CD
C3
c-f"

O

O

C3
),.J°

C3

i..,-a

_D

O

),._*

("3

I,--*°
('3
m-'
r._
©

£D

0 0

0

0

0

0

0

PROBABILITY OF DETECTION

.o o o o O O O

t,D

1#
C)

o

i ITI
Z
C}
m

_ w
!O
i C

I Z
U

0



0

"ii

,p

i*
.... 7

i*

!

4_

a
z

0
m

w
0
z
I.U
C)

z
0

i 0
io

A

i ,

0

T- d d d o d o

NOI10313a -40A_LITIS'CSOHd

O O O

O
O

O'_

cO

I.O

cO
T-

O,I

',- O0
iii
-r"

.,-- O
,._ z

z

I.IJ
"- N

I--
a_ O
d w

ii
III
a

_0

O

d

O

I.O

O

',::l"
O

cO

O

O,I

O

O

O

O

I.--I

©
_r2

or--I
A::I

2:
¢2

I--(

_6
Cxl

or--(

nzl

o

¢.2

°_-._
r_)

O

o
or--(

¢2

O

o_.-(

o

_6

bJ0

6-6



i

I

o

d

o

o

,r-

o

o
o

o o'_ 0o ix.. ¢.o i.o ,_- co CXl _ o
.,- o d c_ d o d o o o o

NOIlO313a _-I0AII-III]VBOHd

CD
ILl
I
O
Z

Z

W

O

a_

©
00

._

O

_D

O

._

O

O

O
°_

O

°_

O

a_

5-6



L,-£

I_°
0"q

cP

i

o

o"
i._°

o
I-b

cp
¢"1"-

ca
l.=d.
o

o

I--J°

Ca

('p

0

).._°

b,
!

I,,--,,t

Ca

i

©

I.--.I

CP
?..

PROBABILITY OF

o o o [_ETECTI_N o o o o ."-"O

O
, , ] : :

"P-_ i

0 i I ".,,.

0 i
-r

i
o
o.1

0

0'}

0

rn co"11
ill
o
.-I o

N
I1"1
m

Z o

z
0 .-,
"I" -_
rn

_0

co

01

O_

'I#

#

e3
0
0
z
"TI

m
z
o
m
E1

o
z
u

!
I

I i

F

0



O
Z

o

o
nn

U.I
O
Z

m
1.1_

: i Z
o
O

o

I'11

: : ii

T--

co

(D

ID
T"

co
T"

d o d d o d o o o

O4
0

0

0

N0110313a -IO _d.1718VS01:=lcl

d
o
o

r.D

©
r.D

¢D

E_
,a
¢D

r.D

O

¢D

¢.)

O

O
or"4

¢D

.4_

c_

O

o_1

o_1

O

t--:

I:W

5-8



6-9

O

O O O O
o .._ i_ L_

PROBABILITY OF
DETECTION

O O
.m b,

0 0 0 0

m kJ 00 Eo b

O'q

(I)

!
0o

'-O

0

0

(I)
_r-
CD

l-io
o

o

i,_o

('_

('D
o-'
o

I,_°

I--L

Izr'
!

,-3

l-',J•

Ix-'

©

I-,-I

DO

o-'

CD

0

0
,...i.

C,

0

0

0

0

O_

0

"-,I

rrl o
"I"i
m 0o

o
--I

rrl

b
o
-r"
m .-_

.--L

..L

CO

01

.--L

O_

..L

O0

CO

b

'Ii,
#

o
O
z

m
z
o
rrl

o
C

Z
0



O O') GO I_

"- d o d

a
z

O

iii

o
IJJ
Q_

I.I._
Z_
O_
Oj

O i

ii

ii

¢

r.,O I._ _ CO

o d o o

NOII0:II:IC]-IOA.I.I-IIBVSOI:Id

o,i ._.
d o

O

O4

O')

CO

T-

C.O

If)

,i=,.

":2

e0

0

0

0

0

0

0

©

c..)
._,,_

L6

0

¢.,)

0

0
°r-I

0

°_1

°r.._

0

°_,-_

5-10



0

0

--@-
@ r
.I

+

c_
z

0

I.I.I

(D

Z
I.I.I

CI

z
0
(2

0

I'

i

!

i

:

d 0 d d o d o

N01103130 _0 111718YS0_d

O O

O_

00

I.O

T-

c0
T-

O

io

i o
0

0

0

C)

T_

©
Cf2

°_,_

C.)

J._

°_,_

0

(_

C_

o_iI

o

o
°_,--4

C.)

C)

0

._,--4

o

c_

C)

bid
or'4

{3-11



5.3 PODS FOR SQUARE DEBONDS

Figures 5-11 through 5-15 show full panel views of the square debonds: as stated

earlier the square debonds were more easily detected. In comparison with the

circular debonds at the full panel views, square debonds with the same size as the

SOFI thickness all showed PODs of 0.95 or greater.

Figures 5-16 through 5-20 show the PODs of the square debonds when the field of

view was reduced for subarea inspections. The detectability of the debonds again

improves with the smaller field of view because of the higher effective resolution.

5.4 PODS FOR SEAM DEBONDS

A POD analysis was conducted on the data from the two seam debonds presented in

section III. The results are shown in figures 5-21 through 5-24. As was expected,

the POD of these asymmetric debonds exhibit a strong dependency on the shear

vector orientation. This is an important point because it is suspected that this type

debond constitutes a large percentage of debonds that may be present in SOFI on

the Orbiter external tank. Figures 5-21 and 5-22 show the 10-inch-by-75-inch seam

and the dependence of the POD on shear vector. Figures 5-23 and 5-24 show the 3-

inch-by-0.75 inch seam. As can be seen from these figures, the length of the seam

debond also plays a large role in its ability to be detected. The POD for the shorter

debond is higher than that of the longer debond in both the full panel and subarea

views. When the shear vector is parallel to the seam debond, the shearographic

indications at the ends of the debond are more easily visually correlated for shorter

seam debonds. In fact, for longer debonds with parallel shear vectors, the

shearographic indication may be interpreted as two separate debonds. Applying a

similar width/SOFI criteria to the seam debonds, it is seen when the SOFI is 0.75

inch thick and the shearing angle is perpendicular to the long axis of the seam all

PODs were essentially 1.

5.5 PROBABILITY OF FALSE DETECTION

The probability of false detection is equally important as the probability of true

detection. Scraping, reinspecting or reconfiguring a piece of flight hardware due to

a false detection of a nonexistent flaw can be extremely time consuming and expen-

sive. If a particular NDT tool produces a significant amount of false detections, it

may be considered noneffective and useless.

No defects were detected in any of the three test panels, at any of the thicknesses,

that were not programmed debonds. However, the shearographic indications of
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some of the smaller debonds in the thicker SOFI thicknesses were vague and diffi-
cult to interpret (detection values of 1 and 2).

If the detection grading criteria established in this report is adhered to, Considering
defects with a detection value of 4 or greater as a true detection, should result in a
extremely low false detection rate. (Note: This statement is made, for the time
being, with no quantifiable evidence. It is based solely on experience and hundreds
of hours of shearographic testing on SOFI.) Detection value 4 is the point where a
debond produces a shearographic indication consisting of a uniformly bright doublet
with no secondary fringes.

Considering, as an example, page B-34, it is seen that defect 16, a 1-inch circular
debond receives a detection value of 5 in the full panel view for all shear vectors and
vacuum drops at a SOFI thickness of 1 inch. NASA Operations is primarily con-
cerned about detecting debonds of 2 inches in diameter or greater in the 1-inch
nominal thickness of SOFI. Therefore, using a detection value of 4 or greater as the
detection threshold to reduce the probability of false detects does not reduce the
usefulness of laser shearography for locating debonds in SOFI.
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SECTION VI

CONCLUSIONS

From the data presented in this report, laser shearography is shown to be a very

powerful tool for the detection of debonds in SOFI foam. The vacuum levels needed

for surface excitement are very low and cause no damage to the surface of the SOFI

or apply any significant level of force to the bond between the SOFI and the sub-

strate.

Because SOFI is a relatively soft, closed cell material when a vacuum is applied to

it, the entire surface under inspection deforms. Therefore, there is a race between

the deformation of the surface due to a debond and that due to the individual expan-

sions of the cells. At low pressure drops, the surface deflection caused by the ex-

pansion of the larger volume of air present at a debond wins out. However, as the

vacuum increases, the deformations caused by the closed cells grow to a point where

the image decorrelates and the defect can no longer be distinuguished. Because of

this phenomenon, large pressure drops are not efficacious and need not be used.

A small integrated vacuum hood, containing a shearographic camera and laser

source, can be manufactured to facilitate shearographic inspection in tight and

difficult to reach areas.

Because of the insensitivity to ambient vibration, this technique can be used in the

field. While testing in the VAB, vibrations in the floor could be felt. This occurred

during movement of the large doors and the crawler-transporter. This may have

introduced some variability in the data, but it did not prevent the use of the instru-
ment.

The sensitivity of laser shearography to debonds in SOFI has been shown tobe

more than adequate. NASA Operations is primarily concerned about detecting

debonds of 2 inches in diameter or greater in the 1-inch nominal thickness of SOFI.

In the test performed for this report, a defect of 1.5 inches in diameter/side was

always detected even in 1.5 inches of SOFI with a 2-foot square field of view. There-

fore, large defect inspections using large fields of view may be conducted. If smaller

defects become a concern, the field of view may be decreased.

It must be emphasized, however, that all inspections should be conducted with

multiple shear vector orientations for results that can be considered reliable. Shear

vectors of 0, 45, and 90 degrees from a vertical orientation seem sufficient to detect

most asymmetric debonds. A shearographic system with a remotely controlled

6-1



shear vector orientation should be considered to facilitate field inspections with
multiple shear vector orientations.

Inspection of the programmed test panels with vacuum offset to simulate the use of
an integrated vaccum hood (i.e., a hood with camera and laser source incorporated
into the hood) produced results virtually identical to those obtained with no vacuum
offset. This implies that results of actual field inspections of the ET SOFI utilizing
an integrated vacuum hood should be similar to the results presented in this report.
Therefore, this data should represent a reasonable baseline for field inspections of
ET SOFI using shearography with vacuum stressing.
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APPENDIX A

UNAVERAGED DATA TAKEN DURING SHEAROGRAPHY TESTS
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APPENDIX B

DEFECT LEGEND AND RAW DATA
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DEBOND LEGEND

NOTE: SEE B-3 FOR PHOTOS OF TEST PANEL PRIOR TO SOFI APPLICATION

DEFECT PANEL DESCRIPTION

1 5

2 5

3 5

4 5

5 5

6 5

7 5

8 5

9 5

10 5

11 3

12 3

13 3

14 3

15 3

16 3

17 3

18 3

19 3

2O 4

21 4

22 4

23 4

24 4

NASA 4

Wedge 4

Triangular Debond - 1" base by 0.75" height
Anular Debond - 2.5" diameter with 0.5" hole

L Debond - 0.75" by 2.5"

Rectangular Debond - 4" by 5 "

L Debond - 1" by 3"

Triangular Debond - 2" base by 1.25" height

Rectangular Debond - 1" by 2"

Rectangular Debond - 3" by 0.75" (Seam)

Anular Debond - 1.25" diameter with 0.5" hole

Cross Debond - 3" by 1"

Square Debond - 1"

Circular Debond - 1.5"

Square Debond - 1.5"

Circular Debond - 0.5"

Circular Debond - 2"

Circular Debond - r'

Square Debond - 0.5"

Circular Debond - 0.75"

Square Debond - 2"

Square Section of Bubble Wrap - 2"

Rectangular Debond - 10" by 0.75" (Seam)

Rectangular Debond - 10" by 0.75" (Seam not used)

Square Debond Pair - 0.5" with 1" Separation

Circular Debond Triple - 0.75" with 0.75" Separation

NASA Debond - See Figure 1-5

Wedge (Resolution Target)
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PANEL 5 PANEL 3

PANEL 4

Test Panels with Programmed Debonds Before SOFI Application
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Defect Thickness Panel Laser Power Orientation Vacuum Value

7 1.5 5 5OO 0 1 4

7 1.5 5 500 45 1 2
7 1.5 5 500 90 1 3

7 1.5 5 500 135 1 5
7 1.25 5 500 0 1 5

7 1.25 5 500 45 1 4
7 1.25 5 500 90 1 4

7 1.25 5 500 135 1 5
7 1 5 500 0 1 5

7 1 5 500 0 5 5
7 1 5 500 0 10 5

7 1 5 500 0 15 5
7 1 5 500 45 1 5

7 1 5 500 45 5 5
7 1 5 500 45 10 5
7 1 5 500 45 15 5

7 1 5 500 90 1 4
7 1 5 500 90 5 4

7 1 5 500 90 10 4
7 1 5 500 90 15 4

7 1 5 500 135 1 5
7 1 5 500 135 5 5
7 1 5 500 135 10 5

7 1 5 500 135 15 5
7 0.75 5 500 0 1 6

7 0.75 5 500 45 1 5
7 0.75 5 500 90 1 5
7 0.75 5 500 135 1 5

7 0.5 5 500 0 1 6
7 0.5 5 500 45 1 6

7 0.5 5 500 90 1 5
7 0.5 5 500 135 1 6
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Defect Thickness Panel Laser Power Orientation Vacuum Value

221.5 4 100 0 1 4

221.5 4 100 45 1 4
221.5 4 100 90 1 2

221.5 4 100 135 1 0
221 4 100 0 1 4
221 4 100 0 10 4

221 4 100 45 1 3
221 4 100 45 10 4

221 4 100 90 1 4
221 4 100 90 10 4

221 4 100 135 1 0
221 4 100 135 10 0
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Defect Thickness Panel Laser Power Orientation Vacuum Value

24 1.5 4 500 0 1 0

24 1.5 4 500 45 1 0
24 1.5 4 500 90 1 0
24 1.5 4 500 135 1 0

24 1.25 4 500 0 1 0
24 1.25 4 500 45 1 0

24 1.25 4 500 90 1 0
24 1.25 4 500 135 1 0

24 1 4 500 0 1 4
24 1 4 500 0 5 4

24 1 4 500 0 10 4
24 1 4 500 0 15 4

24 1 4 500 45 1 0
24 1 4 500 45 5 0
24 1 4 500 45 10 0

24 1 4 500 45 15 0
24 1 4 500 90 1 0

24 1 4 500 90 5 0
24 1 4 500 90 10 4
24 1 4 500 90 15 4

24 1 4 500 135 1 0

24 1 4 500 135 5 3
24 1 4 500 135 10 3
24 1 4 500 135 15 3

24 0.75 4 500 0 1 5
24 0.75 4 500 45 1 5

24 0.75 4 500 90 1 5
24 0.75 4 500 135 1 5
24 0.5 4 500 0 1 6

24 0.5 4 500 45 1 6
24 0.5 4 500 90 1 6

24 0.5 4 500 135 1 6
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